COBALT(III) DICARBOXYLATO BIS-ETHYLENEDIAMINE NITRATES: PREPARATION AND CHARACTERIZATION BY THERMAL ANALYSIS AND OTHER ANALYTICAL METHODS

U. Biader Ceipidor ${ }^{+}$, R. Bucci, V. Carunchio, A. M. Girelli and A. D. Magri
DIPARTIMENTO DI CHIMICA, UNIVERSITÀ "LA SAPIENZA" PIAZZ. LE ALDO MORO 5, 00185 ROMA, ITALY
${ }^{+}$ISTITUTO DI CHIMICA, UNIVERSITÀ DELLA BASILICATA
VIA NAZARIO SAURO 85, 85100 POTENZA, ITALY

(Received July 29, 1988)
Compounds with the general formula cis or trans-[Coen ${ }_{2}\left(\mathrm{RCOO}_{2}\right]_{\mathrm{NO}_{3}}$ were prepared by modifications of known procedures; R was $\mathrm{H}, \mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}$ or $\mathrm{C}_{3} \mathrm{H}_{7}$, and en was ethylenediamine. The compounds were characterized by TLC and UV-Vis spectrophotometry, and their thermal behaviour was examined via TG and DTA, and via IR spectra on heated samples.

The themal stabilities are discussed in terms of the strengths of the bonds in the solids [1] and steric hindrance; the thermal decompositions are described with the aid of hypothesized intermediates and IR spectra.

Reaction steps are identified and the thermal stability sequence is discussed: the cis compounds are less stable than the corresponding trans compounds, due to the lower reticulation effect; the sequence of the cis compounds is the reverse of the sequence of carboxylate ion basicity, while the sequence displalyed by the trans compounds can be interpreted in terms of solid lattice stabilization.

In systematic investigations of the thermal behaviour of solid metal complexes containing carboxylato groups in the coordination shell [2-6], compounds of general formula cis- or trans-[Coen $\left.\mathbf{2}_{2}(\mathrm{RCOO})_{2}\right] \mathrm{NO}_{3}$ were prepared, characterized and examined by TG and DTA. These compounds contain cobalt(III); $\mathbf{R}=\mathbf{H}$, $\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}$ or $\mathrm{C}_{3} \mathrm{H}_{7}$ corresponds to formate, acetate, n-propionate or n-butyrate, and en represents ethylenediamine.

The presence of en allows the possibility of examining the behaviour of the cis and trans isomers, while the increasing length of R affects steric hindrance and/or solid reticulation.

Whereas dicarboxylato bis-ethylenediamine cobalt(III) complexes are generally prepared as perchlorates, in the present work they were made as nitrates. The reason for this is the general behaviour of perchlorate during heating: sputtering phenomena are frequent, introducing unacceptable noise in the recorded signals
(TG and DTA). Anions such as chloride were not employed in order to avoid anation reactions (chloride in the outer sphere of cobalt(III) replacing carboxylato in the inner sphere); such anation reactions reduce the yield of the preparation and complicate the thermal degradation by introducing additional reaction steps.

Experimental

Apparatus and materials

Thermal analyses were carried out with a Perkin-Elmer TGS-2 for TG and model 1700 for DTA. Dynamic oxygen or nitrogen atmospheres were used, with a flow rate of $50 \mathrm{ml} / \mathrm{min}$. TG starting decomposition temperatures were detected when the mass losses were more than 1% of the initial mass; in a similar way the end-temperatures were measured by using 1% of the final residue as tolerance; when two reaction steps overlapped, the inflection point was chosen as the endtemperature of the first step and as the starting temperature of the subsequent one. The IR spectra were recorded on a Perkin-Elmer 125 grating infrared spectrophotometer, using KBr discs, on samples heated up to the temperature corresponding to the estimated end of the reaction step (as detected by TG). The UV-visible spectra were recorded with a Perkin-Elmer 320 spectrophotometer, in 1 cm quartz cells.

The TLC measurements were made on precoated silica gel (Kieselgel 60, art. 5635 , Merck). All the employed reagents were analytical grade commercial products (Merck).

Preparation of cis compounds

[Coen CO_{3}] NO_{3} was obtained by the Linhard and Stirn method [7], starting from trans-[Coen $\left.\mathrm{Cl}_{2}\right] \mathrm{NO}_{3}$ prepared according to Kamada and Tsuschida [8]. To 10 ml of an aqueous solution containing 1.8 g of cis-[Coen $\left.\mathrm{CO}_{3}\right] \mathrm{NO}_{3}, \mathrm{RCOOH}$ solution was added until the molar ratio carboxylate/cobalt was equal to $3 / 1$. The resulting solution was stirred for one hour and then evaporated to half of the initial volume. This solution was left to stand for 12 hours at 0°. After checking for the presence of $\left[\mathrm{Coen}_{2} \mathrm{CO}_{3}\right]^{+}$by TLC, and removal of this latter (when present) by fractional precipitation, the solution was evaporated. The solid microcrystals obtained were washed with acetone and then with diethyl ether.

The yields of cis-[$\left.\mathrm{Coen}_{2}(\mathrm{RCOO})_{2}\right] \mathrm{NO}_{3}$ were in the range $25-40 \%$; the shorter the chain-length in R, the higher the yield was.

Preparation of trans compounds

The compounds trans-[$\left.\mathrm{Coen}_{2}(\mathrm{RCOO})_{2}\right] \mathrm{NO}_{3}$ were obtained by introducing some changes into the Jackman method [9].
0.30 g of trans-[Coen $\left.\mathrm{CH}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{NO}_{3}$, prepared by the Bjerrum procedure [10], was dissolved in 10 ml of dimethylformamide. Acetic, propionic or butyric anhydride was added to the solution, to give a carboxylate/cobalt ratio of $3 / 1$, followed by N, N-dimethylbenzylamine (0.37 ml). The solution was shaken vigorously for 5 min . The trans acetato complex was easily precipitated from solution by the slow addition of diethyl ether during stirring. In contrast, a thick, sticky material was obtained for the propionate or butyrate complex. Accordingly, acetone was added to the oily product to precipitate the complexes, which were removed by filtration. After filtration, the complexes were washed with ethanol and ether. On reprecipitation, pure trans-dicarboxylato-bis(ethylenediamine)cobalt(III) nitrate was obtained, with a yield of $35-40 \%$. Trans-[Coen $\left.\mathbf{C O C O H}_{2}\right] \mathrm{NO}_{3}$ was prepared directly by suspending 2.5 g of $\left[\mathrm{Coen}_{2} \mathrm{CO}_{3}\right] \mathrm{NO}_{3}$ in 12.5 ml of water, and treating the suspension with 1.25 ml of HCOOH for 5 hours at 80°. The solution was then evaporated under reduced pressure and the residue (1.5 g) was treated with 120 ml of methanol. The clear solution, which was found to be a mixture of the cis and trans derivatives, was placed in a flask equipped with a reflux condenser, and was kept in a bath at 80° for 30 hours. The solution was then evaporated to give a wet solid. The addition of ethanol, in the presence of nitric acid and ether, caused precipitation of trans- $\left[\mathrm{Coen}_{2}(\mathrm{OCOH})_{2}\right] \mathrm{NO}_{3}$. It was purified until the UV-vis spectrum was unchanged on further re-precipitation. The precipitate was removed by filtration, washed with ethanol and ether, and vacuum-dried. The overall yield was 20%.

Characterization of the compounds

The $c i s$ and trans isomers were identified through their UV-visible spectra. The agreement wih the known spectra [11, 12] is quite good. In Fig. 1, the spectra of the trans propionate and trans butyrate are shown to supplement the available literature data; in Table 1, the molar absorptivities are listed for all the prepared compounds at several characteristic points of their spectra.

The well-known splitting of the maximum at 500 nm into two bands at 450 and 550 nm can be recognized on passing from the cis to the trans isomers.

The TLC results obtained on polar silica gel are summarized in Table 2. An increasing R_{f} can be observed on going from formate to butyrate, corresponding to the decreasing charge density of the ionic compound [13]. The trans compounds have larger R_{f} values than those of the corresponding cis compounds, due to the lower electric dipole of the trans compounds.

Fig. 1 Absorption spectra of trans-[Coen $\left.(\mathrm{RCOO})_{2}\right]^{+}$expressed as molar absorptivities ε, in $\mathrm{mol}^{-1} \mathrm{~L}$ cm^{-1}, vs λ, in $\mathrm{nm} . \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$, upper spectrum; $\mathbf{R}=\mathrm{C}_{3} \mathrm{H}_{7}$, lower spectrum. Nitrate salt dissolved in water at $25^{\circ} \mathrm{C}$

Table 1 Molar absorptivities ε, in $\mathrm{mol}^{-1} \mathrm{~L} \mathrm{~cm}^{-1}$, at characteristic points λ, in nm, of the absorption spectra (maxima or zero derivative) for the compounds of general formula cis- or trans$\left[\mathrm{Coen}_{2}(\mathrm{RCOO})_{2}\right]^{+}$. The solid nitrates were dissolved in water at $25^{\circ} \mathrm{C}$

Configuration	R	λ	ε	Configuration	R	λ	ε
cis	H	500	128	trans	H	540	51
		360	85			463	31
						357	66
cis	CH_{3}	504	153	trans	CH_{3}	540	61
		361	98			450	29
						355	72
cis	$\mathrm{C}_{2} \mathrm{H}_{5}$	503	139	trans	$\mathrm{C}_{2} \mathrm{H}_{5}$	540	52
		360	91			455	30
						355	72
cis	$\mathrm{C}_{3} \mathrm{H}_{7}$	508	146	trans	$\mathrm{C}_{3} \mathrm{H}_{7}$	540	61
		360	109			455	36
						350	86
cis	$\left[\mathrm{Coen}_{2} \mathrm{CO}_{3}\right]^{+}$	500	132	trans	$\left[\mathrm{Coen}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}$	540	31
		360	120			440	36
						340	55

J. Thermal Anal. 35, 1989

Table 2a TLC on silica gel $\mathrm{Si}_{60} \mathrm{~F}_{254}$: starting compounds for preparation of the examined compounds. Eluent: aqueous solution of $\mathrm{LiNO}_{3}, \quad 5 \mathrm{~mol} / \mathrm{L}$: ethanol $=3: 7(\mathrm{v}: \mathrm{v})$

Compound	R_{f}
trans $\left[\mathrm{Coen}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}$	0.00
$\left[\mathrm{Coen}_{2} \mathrm{CO}_{3}\right]^{+}$	0.59
trans- $\left[\mathrm{Coen}_{2} \mathrm{Cl}_{2}\right]^{+}$	0.75

Table 2b TLC on silica gel $\mathrm{Si}_{60} \mathrm{~F}_{254}$: obtained compounds of general formula cis- or trans$\left[\mathrm{Coen}_{2}(\mathrm{RCOO})_{2}\right]^{+}$. Eluent: dimethylsulfoxide: methanol : methanolic solution of LiNO_{3}, $0.13 \mathrm{~mol} / \mathrm{L}=3: 2: 1(\mathrm{v}: \mathrm{v}: \mathrm{v})$. Nitrate salt used

Configuration	R	R_{f}	Configuration	R	R_{f}
cis	H	0.40	trans	H	0.61
cis	CH_{3}	0.47	trans	CH_{3}	0.68
cis	$\mathrm{C}_{2} \mathrm{H}_{5}$	0.56	trans	$\mathrm{C}_{2} \mathrm{H}_{5}$	0.72
cis	$\mathrm{C}_{3} \mathrm{H}_{7}$	0.63	trans	$\mathrm{C}_{3} \mathrm{H}_{7}$	0.74
	$\left[\mathrm{Coen}_{2} \mathrm{CO}_{3}\right]^{+}$				
	trans $=\left[\mathrm{Coen}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+} R_{f}=0.15$				

Thermoanalytical results

The TG results are shown in Fig. 2, while Fig. 3 reports the DTA of selected compounds to illustrate the behaviour, which is similar for $R=\mathrm{H}$ or CH_{3}, and for $R=\mathrm{C}_{2} \mathrm{H}_{5}$ or $\mathrm{C}_{3} \mathrm{H}_{7}$.

TG reveals at least three reaction steps before the last one at about 850°. To assist assignment of these steps, a list of possible residues has been calculated and is reported in Table 3.

Such data have been used to make tentative assignments in Table 4, where the DTA behaviour is also reported. To support the assignment, made exclusively on a stoichiometric basis, several IR spectra were recorded on compounds heated up to a chosen temperature (corresponding to the presumed end of a given reaction step). The IR spectra are shown in Fig. 4.

Discussion

The preparation of cis-[Coen $\left.\mathbf{C H}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{NO}_{3}$, suggested by other authors [9] as starting material for the preparation of the cis series, gave poor yields. The preparation described above led to higher yields. The results of TLC and the UV-vis

Fig. 2 TG (percentage of initial mass) of compounds of general formula cis- or trans$\left[\mathrm{Coen}_{2}(\mathrm{RCOO})_{2}\right] \mathrm{NO}_{3}$ at heating rate of $10 \mathrm{deg} / \mathrm{min}$ with a N_{2} or O_{2} flow rate of $50 \mathrm{~m} / \mathrm{min}$. Initial masses used are:

trans	$\mathrm{R}=\mathrm{H}$	1.6 mg	trans	$\mathrm{R}=\mathrm{H}$	1.8 mg
O_{2} flow	$=\mathrm{CH}_{3}$	1.5 mg	N_{2} flow	$=\mathrm{CH}_{3}$	1.6 mg
	$=\mathrm{C}_{2} \mathrm{H}_{5}$	1.5 mg		$=\mathrm{C}_{2} \mathrm{H}_{5}$	1.5 mg
	$=\mathrm{C}_{3} \mathrm{H}_{7}$	1.7 mg		$=\mathrm{C}_{3} \mathrm{H}_{7}$	2.0 mg
cis	$\mathrm{R}=\mathrm{H}$	1.4 mg	cis	$\mathbf{R}=\mathrm{H}$	1.8 mg
O_{2} flow	$=\mathrm{CH}_{3}$	1.7 mg	N_{2} flow	$=\mathrm{CH}_{3}$	1.6 mg
	$=\mathrm{C}_{2} \mathrm{H}_{5}$	2.0 mg		$=\mathrm{C}_{2} \mathrm{H}_{5}$	1.9 mg
	$=\mathrm{C}_{3} \mathrm{H}_{7}$	1.9 mg		$=\mathrm{C}_{3} \mathrm{H}_{7}$	1.7 mg

spectra accord with the proposed formulas and with the final residue found at 850° (Table 4).

The UV-vis spectra allowed the identification of the cis and trans configurations [11, 12].

The TLC techniques gave a check on the purity of the compounds obtained.
TLC also gave information on the cis and trans configurations, $R_{f}(\operatorname{trans})>R_{f}($ cis $)$, and carbon chain length. $R_{f}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)>R_{f}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)>R_{f}\left(\mathrm{CH}_{3}\right)>R_{f}(\mathrm{H})$. This sequence is known from chromatography [13]; it is explained by the strengths of the electric interactions

Fig. 3 DTA of some compounds of general formula cis- or $\operatorname{trans}-\left[\mathrm{Coen}_{2}(\mathrm{RCOO})_{2}\right] \mathrm{NO}_{3}$ at a heating rate of $10 \mathrm{deg} / \mathrm{min}$ with a N_{2} or O_{2} flow rate of $50 \mathrm{~mL} / \mathrm{min}$. Initial masses are about the same as used for the corresponding $T G$
with the polar stationary phase. This latter retains ions the more strongly, the higher the molecular dipole moment (trans/cis sequence) and the lower the mean ionic radius ($\mathrm{C}_{n} \mathrm{H}_{2 n+1}$ sequence). Both properties affect the charge density displayed by the ion. It is interesting to observe the trend of R_{f} in Table 2 b : the values for the cis compounds increase linearly with the carbon chain length, while those for the trans compounds tend to a limiting value. This behaviour suggests that one site of the trans compound interacts with silica gel, while both sites interact when the cis configuration is present. The molecular geometry is described below (without the en representation) [14]:

$$
\begin{gathered}
\mathrm{RCOO}^{-} \rightarrow{ }^{3+} \mathrm{Co} \leftarrow{ }^{-} \mathrm{OOCR} \\
\text { trans }
\end{gathered}
$$

On the assumption that the interaction between the complexes and silica gel sites

Table 3 Calculation of residues (expressed as percentages of initial mass) relative to the compound hypothesized from thermal decomposition of general formula $\left[\mathrm{Coen}_{2}(\mathrm{RCOO})_{2}\right] \mathrm{NO}_{3}$. Mass losses are expressed stoichiometrically with no hypothesis about the evolved gases. MW are the rounded molecular weights; en = ethylendiamine; $\mathbf{R}=$ alkyl radical

Symbol	Compound	Loss	R	H	CH_{3}	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{3} \mathrm{H}_{7}$
c0	$\mathrm{Coen}_{2}(\mathrm{RCOO})_{2} \mathrm{NO}_{3}$	-	MW	331	359	387	415
			Res	100	100	100	100
cl	$\mathrm{Coer}_{2}(\mathrm{RCOO})_{2} \mathrm{NO}_{3}$	en	MW	271	299	327	415
			Res	81.9	83.3	84.5	85.5
cl. 1	$\mathrm{Coen}_{2}(\mathrm{RCOO})_{2}$	$\mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}$	MW	269	297	325	353
			Res	81.3	82.7	84.0	85.1
c2	$\mathrm{Coen}(\mathrm{RCOO})_{2}$	en +	MW	209	237	265	293
		$\mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}$	Res	63.1	66.0	68.5	70.6
c3	$\mathrm{Co}(\mathrm{RCOO})_{2}$	$2 \mathrm{en}+$	MW	149	177	205	233
		$\mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}$	Res	45.0	49.3	53.0	56.1
c4	CoCO_{3}	$2 \mathrm{en}+$	MW	119	119	119	119
		$\mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}+$	Res	36.0	33.1	30.7	28.7
		$\mathrm{CO}+\mathrm{R}_{2}$					
c5	CoO	$2 \mathrm{en}+$	MW	75	75	75	75
		$\mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}+$	Res	22.7	20.9	19.4	18.1
		$\mathrm{CO}+\mathrm{R}_{2}+\mathrm{CO}_{2}$					
c5.1	${ }_{2}^{1} \mathrm{Co}_{2} \mathrm{O}_{3}$	$2 \mathrm{en}+$	MW	83	83	83	83
		$\mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}+$	Res	25.1	23.1	21.5	20.0
		$\mathrm{CO}+\mathrm{R}_{2}+\mathrm{CO}_{2}$					
		$-\frac{1}{4} \mathrm{O}_{2}$					

is mainly electrostatic, the distribution coefficient D, i.e. the ratio of the "activity in the stationary phase" to the "activity in the mobile phase", could be represented by

$$
\text { 2.3 } R T \log D=n q / r-\Delta G_{\text {sol }}
$$

were $\Delta G_{\text {sol }}$ is the free energy of the solvated ion, and n is the number of interacting sites ($n=1$ and 2 for trans and cis compounds, respectively, if the assumptions are correct). In both cases, r represents the mean distance of approach between silica gel sites and carboxylato groups, and q is the ion charge.

Rearrangement of the dependence of R_{f} on D [15] leads to the expression

$$
\log D=\log \left(1 / R_{f}-1\right)-\log \left(A_{s} / A_{m}\right)
$$

where A_{s} / A_{m} is the ratio of planar sections for the stationary and the mobile phase, respectively. Combination of the above expressions gives the relation

$$
\log \left(1 / R_{f}-1\right)=A n 1 / r-B+C
$$

where $A=q / 2.3 \mathrm{RT}, B=\Delta G_{\mathrm{sol}} / 2.3 R T$, and $C=\log \left(A_{s} / A_{m}\right)$.

Fig. 4 IR spectra of some compounds of general formula cis- or trans-[Coen $\left.\mathbf{C O C O}_{2}(\mathrm{RCOO})_{2}\right] \mathrm{NO}_{3}$ after heating at $10 \mathrm{deg} / \mathrm{min}$ up to temperature T, in ${ }^{\circ} \mathrm{C}$, in an O_{2} flow. Other conditions are similar to those employed for the corresponding TG

Fig. $5 y=\log \left(I / R_{f}-1\right)$ vs. carbon chain-length $\mathrm{R}=\mathrm{H}$ for abscissa $1, \mathrm{R}=\mathrm{CH}_{3}$ for $2, \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$ for $3, \mathrm{R}=\mathrm{C}_{3} \mathrm{H}_{7}$ for $4 ;$ cis- $\left[\operatorname{Coen}_{2}(\mathrm{RCOO})_{2}\right]^{+}: \Delta,{\operatorname{trans}-\left[\operatorname{Coen}_{2}(\mathrm{RCOO})_{2}\right]^{+}: \Delta}^{\mathrm{R}}$

When r is large enough, small increments in the carbon chain-length will produce a linear change in $\log \left(1 / R_{f}-1\right)$, with the angular coefficients depending on n :

$$
\Delta \log \left(1 / R_{f}-1\right)=-A / r^{2} n \Delta r
$$

From Fig. 5, it can be seen that the slope for the cis series is about twice that for the trans series, in accordance with the hypothesis that two sites are involved when the cis molecules bond to silica gel, while only one site is involved for the trans molecules.

As concerns the thermoanalytical results, the assignment of the residues in Table 4 (made simply on the basis of the possible mass losses listed in Table 3) is confirmed through the IR spectra reported in Fig. 4 for $R=\mathrm{CH}_{3}$ and $\mathrm{C}_{3} \mathrm{H}_{7}$, and from the DTA data shown in Fig. 3 for the same compounds and listed in Table 4 for all compounds.

All the IR spectra exhibit the following bands:

$v \mathrm{~cm}^{-1}$	Assignment	Moiety
-3200	$v(\mathrm{~N}-\mathrm{H})$	en
-2950	$v(\mathrm{C}-\mathrm{H})$	$\mathrm{en}, \mathrm{RCOO}^{-}$
-1620	$\delta(\mathrm{~N}-\mathrm{H})$	en
-1600	$v_{a}(\mathrm{C}-\mathrm{O})$	RCOO^{-}
-1580	$v_{a}(\mathrm{~N}-\mathrm{O})$	NO_{3}^{-}
-1400	$v_{s}(\mathrm{C}-\mathrm{O})$	RCOO^{-}
-1320	$v_{s}(\mathrm{~N}-\mathrm{O})$	NO_{3}^{-}
-1300	$v(\mathrm{C}-\mathrm{C})$	en, RCOO^{-}
-1050	$v(\mathrm{C}-\mathrm{N})$	en
~ 800	$\delta(\mathrm{C}-\mathrm{H})$	en, RCOO^{-}

Table 4 Thermal behaviour of compounds of general formula cis- or trans-[Coen $\left.(\mathrm{RCOO})_{2}\right] \mathrm{NO}_{3}$ in TG at $10 \mathrm{deg} / \mathrm{min}$ in N_{2} or O_{2} flowing at $50 \mathrm{ml} / \mathrm{min}$. The temperatures estimated at the beginning of the step (1% mass loss with respect to starting mass of the examined step), at ar . . conditions. Final is the residue found after heating up to $850^{\circ} \mathrm{C}$. en $=$ ethylenediamine; R $=$ alkyl radical

			Step I						Step 2						Step 3						Final heating	
R	conf.	flow	T_{1}	T_{m}	T_{2}	Res	For	ΔH	T_{1}	T_{m}	T_{2}	Res	For	ΔH	T_{1}	T_{m}	T_{2}	Res	For	ΔH	Res	For
H	trans	O_{2}	150							220	350	47	c3	\dagger	350	410	475	27	c4/c5	\uparrow	23	c5
H	trans	N_{2}	150							220	325	45	c3	\uparrow	325	400	450	27	c4/c5	-		
H	cis	O_{2}	. 150	220	250	62	c2	\uparrow	250	375	380	45	c3	\uparrow	380	440	490	33	c4/c5	\uparrow	23	c5
H	cis	N_{2}	150	205	250	57	c2/c3	\downarrow		360	380	44	c3	-	380	440	500	33	c4/c5	-		
CH_{3}	trans	O_{2}	185							240	280	51	c3	\uparrow	280	325	370	24	c4/c5	\uparrow	21	c5
CH_{3}	trans	N_{2}	185							220	275	49	c3	\uparrow	275	325	380	22	c5	-		
CH_{3}	cis	O_{2}	155	205	245	61	c2/c3	\uparrow	245	280	305	50	c3	\dagger	305	360	460	30	c4	\uparrow	21	c5
CH_{3}	cis	N_{2}	155	215	250	64	c2	\downarrow	250	325	350	50	c3	-	350	400	490	30	c4	-		
$\mathrm{C}_{2} \mathrm{H}_{5}$	trans	O_{2}	175	190	200	80	c1/c2	\downarrow	220	240	275	52	c3	\uparrow	275	325	350	19	c5	\uparrow	19	c5
$\mathrm{C}_{2} \mathrm{H}_{5}$	trans	N_{2}	175	210	220	86	cl	I	220	240	270	51	c3	\uparrow	270	325	380	20	c5	-		
$\mathrm{C}_{2} \mathrm{H}_{5}$	cis	O_{2}	160	225	240	71	c2	-	240	300	360	55	c2/c3	\uparrow	360	400	470	36	c3/c4	\uparrow	19	c5
$\mathrm{C}_{2} \mathrm{H}_{5}$	cis	N_{2}	160	215	230	69	c2	\downarrow	230					-		350	420	35	c3/c4	-		
$\mathrm{C}_{3} \mathrm{H}_{7}$	trans	O_{2}	175	180	190	85	c1	\downarrow	190	230	250	55	c3	\uparrow	250	345	370	19	c5	\uparrow	18	c5
$\mathrm{C}_{3} \mathrm{H}_{7}$	trans	N_{2}	175	190	200	87	cl	\downarrow	200	250	270	41	c3/c4	\uparrow	270	345	375	19	c5	-		
$\mathrm{C}_{3} \mathrm{H}_{7}$	cis	O_{2}	160	215	225	68	c2	-	225	325	350	55	c3	\uparrow	350	400	440	38	c3/c4	\uparrow	18	c5
$\mathrm{C}_{3} \mathrm{H}_{7}$	cis	N_{2}	165	225	240	66	c2	\downarrow	240	305	330	43	c3/c4	-	330	400	450	38	c3/c4	-		

Cis compound: $R=\mathrm{CH}_{3}$. At 240° the NO_{3}^{-}bands disappeared, while the en bands were still present, confirming the residue as a mixture of $\operatorname{Coen}(\mathrm{RCOO})_{2}$ and $\mathrm{Co}(\mathrm{RCOO})_{2}$. DTA step 1 , endo in N_{2}, becomes exo in O_{2}, as result of en oxidation. At 309°, the en bands disappeared, indicating residual $\mathrm{Co}(\mathrm{RCOO})_{2}$; DTA step 2, exo in O_{2}, is due to en oxidation.

Trans compound: $R=\mathrm{CH}_{3}$. The residue at the end of step 1 cannot be isolated. At 280°, both en molecules were lost, together with nitrate, through an exo DTA process corresponding to step 2 , giving $\mathrm{Co}(\mathrm{RCOO})_{2}$ as residue. The bands of NO_{3}^{-} and en disappeared.

Cis compound: $\mathrm{R}=\mathrm{C}_{3} \mathrm{H}_{7}$. At 250°, the NO_{3}^{-}bands disappeared while the en bands were still present, indicating residual Coen $(\mathrm{RCOO})_{2}$. DTA step 1, endo in N_{2}, was masked in O_{2} by en oxidation.

At 375°, the en bands disappeared, while the $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ bonds of the carbon chain still displayed bands. This was in agreement with $\mathrm{Co}(\mathrm{RCOO})_{2}$ as residue, obtained through the loss of en, oxidized in O_{2}, as shown by the exo process corresponding to DTA step 2.

Trans compound: $R=\mathrm{C}_{3} \mathrm{H}_{7}$. At 210°, bands of NO_{3}^{-}could still be recognized, in accordance with the residual mixture $\left[\operatorname{Coen}(\mathrm{RCOO})_{2}\right] \mathrm{NO}_{3} / \mathrm{Coen}(\mathrm{RCOO})_{2}$. DTA step 1 was endo both in N_{2} and in O_{2}, suggesting that a little en was lost: $\operatorname{Coen}(\mathrm{RCOO})_{2}$ has about the same molecular weight as the hypothesized $\left[\operatorname{Coen}(\mathrm{RCOO})_{2}\right] \mathrm{NO}_{3}$, so the choice between them is difficult. At 270° both NO_{3}^{-} and en bands disappeared, suggesting residual $\mathrm{Co}(\mathrm{RCOO})_{2}$, while $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ bands of the carbon chain still remained. DTA step 2 exo was observed both in O_{2} and in N_{2}. The hypothesized reaction steps are summarized below, with the corresponding thermal effect displayed in N_{2} :

$$
\begin{array}{cc}
{\left[\operatorname{Coen}_{2}(\mathrm{RCOO})_{2}\right] \mathrm{NO}_{3} \rightarrow\left[\operatorname{Coen}(\mathrm{RCOO})_{2}\right] \mathrm{NO}_{3}+e n} & \text { "endo" } \\
{\left[\mathrm{Co} e n(\mathrm{RCOO})_{2}\right] \mathrm{NO}_{3} \rightarrow \operatorname{Coen}(\mathrm{RCOO})_{2}+\mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}} & \text { "endo" } \\
\mathrm{Coen}(\mathrm{RCOO})_{2} \rightarrow \mathrm{Co}(\mathrm{RCOO})_{2}+e n & \text { "none" } \\
\mathrm{Co}(\mathrm{RCOO})_{2} \rightarrow \mathrm{CoCO}_{3}+\mathrm{CO}+\mathrm{R}_{2} & \text { "none" }
\end{array}
$$

The first two reactions generally overlapped in a single TG step. It is not possible to correlate the reaction steps for all the examined compounds, owing to the different degrees of overlapping displayed by the reactions. For the first step this can be done: the following thermal stability scale, relative to carbon chain R of the carboxylates, was found:

$$
\text { trans }>\text { cis }
$$

$$
\begin{array}{ll}
\text { cis } & \mathrm{C}_{3} \mathrm{H}_{7}>\mathrm{C}_{2} \mathrm{H}_{5}>\mathrm{CH}_{3}>\mathrm{H} \\
\text { trans } & \mathrm{CH}_{3}>\mathrm{C}_{2} \mathrm{H}_{5} \simeq \mathrm{C}_{3} \mathrm{H}_{7}>\mathrm{H}
\end{array}
$$

All the trans compounds displayed a higher thermal stability than that of the corresponding cis compound (except for the formates, which are roughly equal in thermal stability).

This behaviour can be explained by considering that the solid lattice reticulation of the trans compound is higher than that of the corresponding cis compound: the spatial geometry increases the intermolecular bonds available through carboxylato groups (each being opposite the other).

The thermal stability sequence, expected to be the reverse of that for RCOO^{-} basicity, can be recognized for the cis compounds. The basic principle is that, the higher the metal to ligand bond strength, the weaker the intermolecular bonds (solid lattice) [6]. The reactivity of the complexes in the aquation reaction follows the same model [11]: a more basic carboxylate is less reactive to substitution, owing to the fact that the metal acceptor power, responsible for water coordination in the activated state, is reduced.

In the trans compounds, the thermal stability is not basicity-driven. Thus, it may be assumed that solid reticulation through the first term of the carbon chain prevails, with a higher thermal stability when $\mathrm{R}={ }^{\circ} \mathrm{CH}_{3}$ that when $\mathrm{R}=\mathrm{H}$. Subsequent CH_{2}^{-}addition to the chain reduces the lattice rigidity and consequently the thermal stability. In a similar way, the observed thermal stabilities can also be explained for the trans compounds.

In conclusion, the reticulation effect seems to be important only for the trans compounds, where the spatial geometry enhances the bonds between the molecules (each bond through a carboxylato donor group is opposite the other). The cis compounds, with a less favourable geometry, follow the general rule of thermal stability, reversed with respect to carboxylato ion basicity. The result is that they are less stable towards thermal decomposition than the corresponding trans compounds.

This work was carried out with the financial support of the Consiglio Nazionale delle Ricerche (C.N.R.), which also gave a grant to one of us (A.M.G.).

References

1 G. D'Ascenzo, U. Biader Ceipidor and G. De Angelis, Anal. Chim. Acta, 58 (1972) 175.
2 U. Biader Ceipidor, D. D'Ascenzo, M. Tomassetti and E. Cardarelli, Thermochim. Acta, 30 (1979) 15.

3 U. Biader Ceipidor, G. D'Ascenzo and M. Tomassetti, Thermochim. Acta, 31 (1979) 341.
4 U. Carunchio, A. Cristalli and G. GrassiniStrazza, Ann. Chim., 68 (1978) 279.
5 G. Grassini-Strazza, C. M. Polcaro, V.

Carunchio and A. Messina, Inorg. Chim. 11 T. J. Przystas, J. R. Word and A. Haim, Inorg. Acta, 29 (1978) L265.
6 G. D'Ascenzo, V. Carunchio, A. D. Magri' and A. Marino, Atti Accad. Naz. Lincei Rend. Classe Sci. Fis. Mat. Natur., 56 (1974) 355.
7 V. M. Linhard and G. Stirn, Z. Anorg. Allgem. Chem., 268 (1952) 105.
8 S. Kamada and R. Tsuchida, Bl. Chem. Soc. Japan, 25 (1952) 127.
9 L. M. Jackman, R. M. Scott, R. H. Partman and J. F. Dormiṣ, Inorg. Chem., 18 (1979) 1497.

10 J. Bjerrum and S. E. Rasmussen, Acta Chem. Scandinavica, 6 (1952) 1265.

Chem., 12 (1973) 743.
12 F. A. Cotton and G. Wilkinson, Chimica inorganica (Ed. Ambrosiana), Milano, 1968 , p. 884 .

13 V. Carunchio and G. Grassini-Strazza, Chromatographic reviews, Vol. 8, Elsevier-Amsterdam, 1966, p. 260.
14 J. Sliwiok, T. Kowalska, B. Kocjan and B. Korczak, Chromatographia, 14 (1981) 363.
15 E. Heftmann, Chromatography, Reynhold Company, New York, 1967, p. 131.

Zusammenfassung - Unter Durchführung einiger Abänderungen des bekannten Verfahrens wurden Verbindungen der allgemeinen Formel conf-Co[en $\left.n_{2}(\mathrm{RCOO})_{2}\right] \mathrm{NO}_{3}$ hergestellt. Der Alkylrest R war H , $\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{7}$ und en war Ethylendiamin. Die Verbidungen mit conf = cis oder trans wurden mittels TLC und UV-Spektrophotometrie charakterisiert. Ihr thermisches Verhalten wurde anhand von TG, DTA und IR-Spektren von erhitzten Proben untersucht. Die thermische Stabilität wurde untersucht und in Abhängigkeit von Bindungsstärke und sterischer Behinderung diskutirt; weiterhin wurden die thermischen Zersetzungen mit Hilfe angenommener Intermediäre und deren IR-Spektren beschrieben. Die Reaktionsschritte wurden identifiziert und eine Stabilitätsreihe aufgestellt und diskutiert: cis-Verbindungen erwiesen sich als instabiler als die entsprechenden trans-Verbindungen, was einem geringeren Vernetzungseffekt zuzuschreiben ist; Die Reihenfolge folgt im Falle von cis dem Reziproken der Carboxylationenbasizität, während die Reihenfolge im Falle von trans mittels der Gitterstabilisierung erklärt werden kann.

Резюме - Путем модифицирования некоторых известных методов, получены соединения общей формулы конф-[Coen $\left.\mathbf{C O C O}_{2}(\mathrm{RCOO})_{2}\right] \mathrm{NO}_{3}$, где $\mathrm{R}=\mathrm{H}, \mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{7}$, а еп $=$ этилендиамин. Соединения с цис- или транс-конформацией были охарактеризованы тонкослойной хроматографией и абсорбционной спектроскопией в УФ-и видимой области. Термическое поведение их изучено методами ТГ и ДТА, а также высокотемпературной ИК спектроскопией. Найденная термоустойчивость данных соединений обсуждена на основе силы твердых связей и стерических препятствий. Термическое разложение их описано, исходя из предполагаемых промежуточных продуктов и их ИК спектров. Идентифицированы реакционные стадии и обсуждена последовательность их термоустойчивости: цис-соединения менее устойчивы, чем соответствуюцие транссоединения, вследствии их сетчатого строения. Порядок устойчивости цис-соединений обратный основности карбоксилат-иона, тогда как для транс-соединений этот порядок может быть объяснен на основе устойчивости твердотельной решетки.

